810 research outputs found

    Investigation of phase-separated electronic states in 1.5µm GaInNAs/GaAs heterostructures by optical spectroscopy

    Get PDF
    We report on the comparative electronic state characteristics of particular GaInNAs/GaAs quantum well structures that emit near 1.3 and 1.5 µm wavelength at room temperature. While the electronic structure of the 1.3 µm sample is consistent with a standard quantum well, the 1.5 µm sample demonstrate quite different characteristics. By using photoluminescence sPLd excitation spectroscopy at various detection wavelengths, we demonstrate that the macroscopic electronic states in the 1.5 µm structures originate from phase-separated quantum dots instead of quantum wells. PL measurements with spectrally selective excitation provide further evidence for the existence of composition-separated phases. The evidence is consistent with phase segregation during the growth leading to two phases, one with high In and N content which accounts for the efficient low energy 1.5 µm emission, and the other one having lower In and N content which contributes metastable states and only emits under excitation in a particular wavelength range

    Velocity and depth distributions in stream reaches: testing European models in Ecuador

    Get PDF
    We tested how European statistical hydraulic models developed in France and Germany predicted the frequency distributions of water depth and point-velocity measured in 14 reaches in Ecuador during 25 surveys. We first fitted the observed frequency distributions to parametric functions defined in Europe and predicted the parameters from the average characteristics of reaches (e.g. discharge rate, mean depth and width) using European regressions. When explaining the frequency of three classes of velocity and three classes of depth among reach surveys, the fitted and predicted distributions had a low absolute bias (< 3%). The residual variance of fits relative to the mean class variance was < 18%. The residual variance of predicted frequencies was 30-61% for velocity classes and 20-36% for depth classes. Overall, the European models appeared appropriate for Ecuadorian stream reaches but could be improved. Our study demonstrates the transferability of statistical hydraulic models between widely-separated geographic regions

    A mathematical model for mechanotransduction at the early steps of suture formation

    Get PDF
    Growth and patterning of craniofacial sutures are subjected to the effects of mechanical stress. Mechanotransduction processes occurring at the margins of the sutures are not precisely understood. Here, we propose a simple theoretical model based on the orientation of collagen fibres within the suture in response to local stress. We demonstrate that fibre alignment generates an instability leading to the emergence of interdigitations. We confirm the appearance of this instability both analytically and numerically. To support our model, we use histology and synchrotron x-ray microtomography and reveal the fine structure of fibres within the sutural mesenchyme and their insertion into the bone. Furthermore, using a mouse model with impaired mechanotransduction, we show that the architecture of sutures is disturbed when forces are not interpreted properly. Finally, by studying the structure of sutures in the mouse, the rat, an actinopterygian (\emph{Polypterus bichir}) and a placoderm (\emph{Compagopiscis croucheri}), we show that bone deposition patterns during dermal bone growth are conserved within jawed vertebrates. In total, these results support the role of mechanical constraints in the growth and patterning of craniofacial sutures, a process that was probably effective at the emergence of gnathostomes, and provide new directions for the understanding of normal and pathological suture fusion

    Efficient Parallel Simulation of Atherosclerotic Plaque Formation Using Higher Order Discontinuous Galerkin Schemes

    Get PDF
    Abstract The compact Discontinuous Galerkin 2 (CDG2) method was successfully tested for elliptic problems, scalar convection-diffusion equations and compressible Navier-Stokes equations. In this paper we use the newly developed DG method to solve a mathematical model for early stages of atherosclerotic plaque formation. Atherosclerotic plaque is mainly formed by accumulation of lipid-laden cells in the arterial walls which leads to a heart attack in case the artery is occluded or a thrombus is built through a rupture of the plaque. After describing a mathematical model and the discretization scheme, we present some benchmark tests comparing the CDG2 method to other commonly used DG methods. Furthermore, we take parallelization and higher order discretization schemes into account.

    Strictly Toral Dynamics

    Full text link
    This article deals with nonwandering (e.g. area-preserving) homeomorphisms of the torus T2\mathbb{T}^2 which are homotopic to the identity and strictly toral, in the sense that they exhibit dynamical properties that are not present in homeomorphisms of the annulus or the plane. This includes all homeomorphisms which have a rotation set with nonempty interior. We define two types of points: inessential and essential. The set of inessential points ine(f)ine(f) is shown to be a disjoint union of periodic topological disks ("elliptic islands"), while the set of essential points ess(f)ess(f) is an essential continuum, with typically rich dynamics (the "chaotic region"). This generalizes and improves a similar description by J\"ager. The key result is boundedness of these "elliptic islands", which allows, among other things, to obtain sharp (uniform) bounds of the diffusion rates. We also show that the dynamics in ess(f)ess(f) is as rich as in T2\mathbb{T}^2 from the rotational viewpoint, and we obtain results relating the existence of large invariant topological disks to the abundance of fixed points.Comment: Incorporates suggestions and corrections by the referees. To appear in Inv. Mat

    The one-dimensional Keller-Segel model with fractional diffusion of cells

    Get PDF
    We investigate the one-dimensional Keller-Segel model where the diffusion is replaced by a non-local operator, namely the fractional diffusion with exponent 0<α20<\alpha\leq 2. We prove some features related to the classical two-dimensional Keller-Segel system: blow-up may or may not occur depending on the initial data. More precisely a singularity appears in finite time when α<1\alpha<1 and the initial configuration of cells is sufficiently concentrated. On the opposite, global existence holds true for α1\alpha\leq1 if the initial density is small enough in the sense of the L1/αL^{1/\alpha} norm.Comment: 12 page

    Uniform convergence to equilibrium for granular media

    Get PDF
    We study the long time asymptotics of a nonlinear, nonlocal equation used in the modelling of granular media. We prove a uniform exponential convergence to equilibrium for degenerately convex and non convex interaction or confinement potentials, improving in particular results by J. A. Carrillo, R. J. McCann and C. Villani. The method is based on studying the dissipation of the Wasserstein distance between a solution and the steady state

    Joule overheating poisons the fractional ac Josephson effect in topological Josephson junctions

    Full text link
    Topological Josephson junctions designed on the surface of a 3D-topological insulator (TI) harbor Majorana bound states (MBS's) among a continuum of conventional Andreev bound states. The distinct feature of these MBS's lies in the 4π4\pi-periodicity of their energy-phase relation that yields a fractional ac Josephson effect and a suppression of odd Shapiro steps under r ⁣fr\!f irradiation. Yet, recent experiments showed that a few, or only the first, odd Shapiro steps are missing, casting doubts on the interpretation. Here, we show that Josephson junctions tailored on the large bandgap 3D TI Bi2_2Se3_3 exhibit a fractional ac Josephson effect acting on the first Shapiro step only. With a modified resistively shunted junction model, we demonstrate that the resilience of higher order odd Shapiro steps can be accounted for by thermal poisoning driven by Joule overheating. Furthermore, we uncover a residual supercurrent at the nodes between Shapiro lobes, which provides a direct and novel signature of the current carried by the MBS. Our findings showcase the crucial role of thermal effects in topological Josephson junctions and lend support to the Majorana origin of the partial suppression of odd Shapiro steps.Comment: Revised article and Supplemental materia
    corecore